Serveur d'exploration sur la musique en Sarre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

CHAPTER 2 - Bone Structural Adaptation and Wolff's Law

Identifieur interne : 000127 ( Main/Exploration ); précédent : 000126; suivant : 000128

CHAPTER 2 - Bone Structural Adaptation and Wolff's Law

Auteurs : Bettina Willie [Allemagne] ; Georg N. Duda [Allemagne] ; Richard Weinkamer [Allemagne]

Source :

RBID : ISTEX:58968A55CB5020363D90C316A496DA8F1CB44286

English descriptors

Abstract

Living bone has the ability to adapt its structure to a changing mechanical environment. This is possible since bone is continuously formed and resorbed by cells during the mechano‐regulated process of bone (re)modelling. This chapter aims to review the joint effort of different scientific communities, who address the problem of bone adaptation on very different length and time scales. The bioengineer asks the question of what is the actual mechanical load in our bones, which is surprisingly challenging even on the macroscopic scale, whereas the (molecular) biologist searches for the basis of the regulation on the inter‐ and intracellular level. Experiments are performed on animals and using computer models to understand the mechano‐regulation of bone's structural adaptation in a more systemic way. To learn from the bony fossil record about living habits, anthropologists try to interpret bone structures in terms of their loading conditions during life. Last but not least, bone serves as a source of inspiration for the materials scientist developing synthetic adaptive materials.

Url:
DOI: 10.1039/9781849737555-00017


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>CHAPTER 2 - Bone Structural Adaptation and Wolff's Law</title>
<author>
<name sortKey="Willie, Bettina" sort="Willie, Bettina" uniqKey="Willie B" first="Bettina" last="Willie">Bettina Willie</name>
</author>
<author>
<name sortKey="Duda, Georg N" sort="Duda, Georg N" uniqKey="Duda G" first="Georg N." last="Duda">Georg N. Duda</name>
</author>
<author>
<name sortKey="Weinkamer, Richard" sort="Weinkamer, Richard" uniqKey="Weinkamer R" first="Richard" last="Weinkamer">Richard Weinkamer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:58968A55CB5020363D90C316A496DA8F1CB44286</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1039/9781849737555-00017</idno>
<idno type="url">https://api.istex.fr/document/58968A55CB5020363D90C316A496DA8F1CB44286/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000940</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000940</idno>
<idno type="wicri:Area/Istex/Curation">000890</idno>
<idno type="wicri:Area/Istex/Checkpoint">000012</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000012</idno>
<idno type="wicri:doubleKey">2046-0066:2013:Willie B:chapter:bone:structural</idno>
<idno type="wicri:Area/Main/Merge">000127</idno>
<idno type="wicri:Area/Main/Curation">000127</idno>
<idno type="wicri:Area/Main/Exploration">000127</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">CHAPTER 2 - Bone Structural Adaptation and Wolff's Law</title>
<author>
<name sortKey="Willie, Bettina" sort="Willie, Bettina" uniqKey="Willie B" first="Bettina" last="Willie">Bettina Willie</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Charité, Julius Wolff Institute and Center for Musculoskeletal Surgery, Augustenburger Platz 1, D‐13353 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Duda, Georg N" sort="Duda, Georg N" uniqKey="Duda G" first="Georg N." last="Duda">Georg N. Duda</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Charité, Julius Wolff Institute and Center for Musculoskeletal Surgery, Augustenburger Platz 1, D‐13353 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Weinkamer, Richard" sort="Weinkamer, Richard" uniqKey="Weinkamer R" first="Richard" last="Weinkamer">Richard Weinkamer</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Science Park Potsdam‐Golm, D‐14424 Potsdam</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Allemagne</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="s">RSC Smart Materials</title>
<idno type="ISSN">2046-0066</idno>
<idno type="eISSN">2046-0074</idno>
<idno type="ISSN">2046-0066</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">2046-0066</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Adaptation</term>
<term>Adaptive</term>
<term>Adaptive response</term>
<term>Algorithm</term>
<term>Alternative approach</term>
<term>American society</term>
<term>Anat</term>
<term>Animal experiments</term>
<term>Annual conference</term>
<term>Apoptotic osteocytes</term>
<term>Bergmann</term>
<term>Biol</term>
<term>Biological processes</term>
<term>Biomech</term>
<term>Bipedal locomotion</term>
<term>Bone</term>
<term>Bone adaptation</term>
<term>Bone architecture</term>
<term>Bone density</term>
<term>Bone formation</term>
<term>Bone mass</term>
<term>Bone matrix</term>
<term>Bone miner</term>
<term>Bone osteocytes</term>
<term>Bone remodelling</term>
<term>Bone structure</term>
<term>Bone tissue</term>
<term>Bone volume fraction</term>
<term>Cambridge university press</term>
<term>Cell physiol</term>
<term>Cell response</term>
<term>Cellular control</term>
<term>Cellular level</term>
<term>Computational work</term>
<term>Computer model</term>
<term>Computer models</term>
<term>Computer simulations</term>
<term>Contact forces</term>
<term>Cortical</term>
<term>Cortical bone</term>
<term>Current understanding</term>
<term>Dendritic processes</term>
<term>Duda</term>
<term>Endogenous sost mrna expression</term>
<term>External loading</term>
<term>Failure load</term>
<term>Femoral</term>
<term>Femoral neck</term>
<term>Femur</term>
<term>Figure chapter</term>
<term>Fracture</term>
<term>Fratzl</term>
<term>Freien universitat berlin</term>
<term>Gene encoding sclerostin</term>
<term>General pattern</term>
<term>Graichen</term>
<term>Huiskes</term>
<term>Imaging</term>
<term>Implantable telemetry</term>
<term>Indeterminate problem</term>
<term>Individual muscle forces</term>
<term>Individual patients</term>
<term>Iterative algorithm</term>
<term>Lanyon</term>
<term>Lazy zone</term>
<term>Loading</term>
<term>Loading conditions</term>
<term>Loading cycles</term>
<term>Loading duration</term>
<term>Locomotor behaviour</term>
<term>Long bones</term>
<term>Materials science</term>
<term>Materials scientist</term>
<term>Materials scientists</term>
<term>Matrix</term>
<term>Mechanical environment</term>
<term>Mechanical load</term>
<term>Mechanical loading</term>
<term>Mechanical properties</term>
<term>Mechanical stimulation</term>
<term>Mechanical stimulus</term>
<term>Mechanical strain</term>
<term>Mechano transduction</term>
<term>Miner</term>
<term>Mineral content</term>
<term>Mineral homeostasis</term>
<term>Molecular biology</term>
<term>Mouse tibia</term>
<term>Muscle activities</term>
<term>Muscle anatomy</term>
<term>Muscle forces</term>
<term>Musculoskeletal</term>
<term>Musculoskeletal loading</term>
<term>Musculoskeletal loading conditions</term>
<term>Optimization</term>
<term>Optimization approach</term>
<term>Optimization criterion</term>
<term>Optimization principle</term>
<term>Orthop</term>
<term>Osteoblast</term>
<term>Osteoclast</term>
<term>Osteoclast activation</term>
<term>Osteocyte</term>
<term>Osteogenic response</term>
<term>Physiol</term>
<term>Possible loading cases</term>
<term>Present study</term>
<term>Primate species papio hamadryas</term>
<term>Protein sclerostin</term>
<term>Proximal</term>
<term>Proximal femur</term>
<term>Proximal tibia</term>
<term>Recent data</term>
<term>Remodelling</term>
<term>Remodelling rule</term>
<term>Robling</term>
<term>Rohlmann</term>
<term>Royal society</term>
<term>Rubin</term>
<term>Sclerostin</term>
<term>Signal transmission</term>
<term>Silico experiments</term>
<term>Skeletal response</term>
<term>Sost</term>
<term>Spatial distribution</term>
<term>Strain energy density</term>
<term>Structural adaptation</term>
<term>Structural changes</term>
<term>Structural response</term>
<term>Test hypotheses</term>
<term>Tibia</term>
<term>Time evolution</term>
<term>Times body weight</term>
<term>Trabecula</term>
<term>Trabecular</term>
<term>Trabecular architecture</term>
<term>Trabecular bone</term>
<term>Trabecular bone architecture</term>
<term>Trabecular bone volume fraction</term>
<term>Trajectorial hypothesis</term>
<term>Transgenic mouse</term>
<term>Ulna</term>
<term>Ulnar model</term>
<term>Vivo</term>
<term>Vivo ligament force measurements</term>
<term>Weinkamer</term>
<term>Zhang</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Living bone has the ability to adapt its structure to a changing mechanical environment. This is possible since bone is continuously formed and resorbed by cells during the mechano‐regulated process of bone (re)modelling. This chapter aims to review the joint effort of different scientific communities, who address the problem of bone adaptation on very different length and time scales. The bioengineer asks the question of what is the actual mechanical load in our bones, which is surprisingly challenging even on the macroscopic scale, whereas the (molecular) biologist searches for the basis of the regulation on the inter‐ and intracellular level. Experiments are performed on animals and using computer models to understand the mechano‐regulation of bone's structural adaptation in a more systemic way. To learn from the bony fossil record about living habits, anthropologists try to interpret bone structures in terms of their loading conditions during life. Last but not least, bone serves as a source of inspiration for the materials scientist developing synthetic adaptive materials.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Berlin</li>
<li>Brandebourg</li>
</region>
<settlement>
<li>Berlin</li>
<li>Potsdam</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Berlin">
<name sortKey="Willie, Bettina" sort="Willie, Bettina" uniqKey="Willie B" first="Bettina" last="Willie">Bettina Willie</name>
</region>
<name sortKey="Duda, Georg N" sort="Duda, Georg N" uniqKey="Duda G" first="Georg N." last="Duda">Georg N. Duda</name>
<name sortKey="Weinkamer, Richard" sort="Weinkamer, Richard" uniqKey="Weinkamer R" first="Richard" last="Weinkamer">Richard Weinkamer</name>
<name sortKey="Weinkamer, Richard" sort="Weinkamer, Richard" uniqKey="Weinkamer R" first="Richard" last="Weinkamer">Richard Weinkamer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sarre/explor/MusicSarreV3/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000127 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000127 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sarre
   |area=    MusicSarreV3
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:58968A55CB5020363D90C316A496DA8F1CB44286
   |texte=   CHAPTER 2 - Bone Structural Adaptation and Wolff's Law
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sun Jul 15 18:16:09 2018. Site generation: Tue Mar 5 19:21:25 2024